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In actual use it is observed that (13) converges very rapidly, so that
three iterations are sufficient with N = 30 for a wide range of
dimensions and frequencies. Furthermore, in any of the cases con-
sidered the iterated weighting factor Zy! turned out to be of the
order of that Z,,; which was found by minimizing | dbx(Z)/dN |.
For example, in Fig. 2 the values of Zy! and Z,,; differ by a factor
of about 3.5.

NUMERICAL RESULTS

The input admittance ¥ = jb of the resonating structure shown in
Fig. 1 was computed and is plotted as a function of frequency. Series
resonance occurs when the capacitive gap compensates the input
impedance of the propagating circular Fo mode. The validity of the
program has been tested by comparison with Marcuvitz’ results for
the capacitive gap at low frequencies, which is same as the problem
considered here with ¢, = 1 [87]. Generation of the orthonormalized
functions t.I, 11, and the elements of the matrix G takes about 30 s
of CPU time on a CDC-6400 computer for the sum of the modes
N + P = 80. The CPU time required for the generation and inver-
sion of a 50 X 50 complex Cy-matrix is about 5 s.

Fig. 2 shows the dependence of the least squares solution by on
weighting factor Z and mode number N. At the same time an error
estimate is provided, since a change of sign exists for the slope of
by (Z). For comparison, the deviation of |rw(Z) | from its ideal
value | 7| = 1 is also plotted as a measure of power conservation
in Fig. 2.

The dashed curve in Fig. 2 refers to susceptances which were
computed by minimizing | dbx(Z) /dN | with respect to Z at given
values of N. The utilization of the iterated weighting factor Zyt
requires less computer time and results in the dotted curve.

In addition to this, the influence of the upper summation limits N
and P on the convergence rate has been studied because the ratio
N/P plays an important role for methods which exhibit relative
convergence phenomena [97], [10]. In Fig. 3 the dependence of
by on this ratio is shown as a function of the mode number N. The
trend of the minimum value of Fy decreasing with N for a fixed
Z = Zop as seen from Fig. 3 serves as a measure of the convergence
rate. It has been found generally that it is sufficient to choose N/P in
accordance with point-matching methods, so that in the present
case, the near-optimum value of N/P = R./(R. — R.) lies between
10/56 and 10/6. This coincides with the behavior of Fy shown in
Fig. 3 having its maximum average slope Fio/Fs around this ratio
of N/P.
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Fig. 3. (a) Influence of the N /P ratio on the convergence of b for near
optimum Z, Z/Z: =8; f =1 GHz. (b) Corresponding Hermitian
forms Fy. The average slope Fi9/F5 serves as a measure of convergence.
f =1GHz.
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The Solution of Electromagnetic Eigenvalue Problems
by Least Squares Boundary Residuals

HUGH J. A. LARIVIERE anp
J. BRIAN DAVIES, MEMBER, IEEE

Abstract—The least squares boundary residual technique as used
for the numerical solution of scattering problems is extended to the
solution of electromagnetic eigenvalue problems. The theory is de-
scribed and numerical results are given for the solution of an L-
shaped membrane and microstrip in a hollow conducting guide. The
microstrip example was chosen as a test case to compare with Fourier
matching. This least square error mimimization technique is of the
same family as point matching and Fourier matching; however, it is
shown to have three potentially important advantages: 1) it is rigor-
ously convergent, 2) the choice of optimum weighting factors greatly
accelerates convergence between a decreasing upper bound and
an increasing lower bound, and 3) it is free from problems of relative
convergence.

I. INTRODUCTION

Recently, there has been a surge of interest in the least squares
boundary residual technique for the numerical solution of scattering
problems [17],[16],[19]. In this short paper, the same approach
is extended to the solution of eigenvalue problems, and examples
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are given of solutions of hollow conducting waveguide and of micro-
strip in a box. An appraisal of the method is given in the final section.

As in the scattering problem, the least squares approach has
(in contrast to point-matching [13] and the usual Fourier-matching
techniques [3]) the advantage of free parameters that can be chosen
to guide convergence between a generally decreasing upper bound
and an increasing lower bound. These parameters can be approxi-
mated for small order matrices and then used to accelerate conver-
gence with increasing matrix order. Other advantages of the method
are (compared with Fourier matching) its freedom from problems of
relative convergence [2],[3], and (compared with point matching)
its safer criterion, errors being minimized that are global rather than
sampled just at discrete points.

To avoid repetition, it will be taken that most of the finer details
given for the scattering problem [1] still apply, e.g., choice of
basis functions, the use of mathematically convenient interfaces,
and aspects of the edge condition. After a brief account of the
principles of the method (Section II), results of applications will be
given in Section IIT and a final discussion follows in Section IV.

I. THEORY

In point matching, Fourier matching, and the proposed least
squares approach, advantage is taken of the fact that one can easily
satisfy the differential equation of the problem. In each method, the
region of the problem is divided into a number of subregions, over
each of which is taken a truncated series from a complete expansion.
In this way, the problem is reduced to approximately satisfying
boundary conditions over certain interfaces. These interfaces may be
physical ones, such as conducting or dielectric surfaces (boundaries
of the original problem) or ones of mathematical convenience that
join up the specially introduced subregions.

The boundary residual is defined [1] around the interfaces
as a function R(s) that is a linear combination of the total electro-
magnetic field expansions in adjacent subregions, a combina-
tion such that at all points of the interfaces (viz., for all ) the
vanishing of R{s) is a necessary condition for the physical solution
to the problem. Point matching arranges that these boundary re-
siduals vanish at selected points around the interfaces. Fourier
matching (or the method of moments [4]) arranges that E(s) is
orthogonal (over the range of s) to a finite number of basis functions.
Least squares matching minimizes some weighted integral of R(s)?
over all s. In all cases, the eigenvalues have also to be found that
allow the preceding boundary conditions to be best satisfied.

Least square solution of an eigenvalue problem will now be
illustrated by consideration of the arbitrarily shaped two-dimen-
sional region in Fig. 1. Suppose it is possible to write expansions of the
E and H fields in each region as

N N

E = 2 aun® Hi = 2 amga® 1)
n=1 n=1
M M

E, = Z brpn® Hy = D, bugn® (2)
n=1 =1

which satisfy the boundary conditions on C; and C,, and Maxwell’s
equations in S; and Ss, respectively. The preceding field basis func-
tions ¢n* and ¥,* must all satisfy the same vector Helmholtz equation

(V2 + kv =0. 3)

The problem now is to obtain the wavenumber & and the coefficients
@ and b, of (1) and (2) that give the best approximation to E;* = Ey*
and H,! = H,! across the interface C' (f denoting the vector compo-
nent tangential to C). A Hermitian form in a’s and ’s can now be
defined by the functional

J (fan}, {ba},k) =/ (|Ef — B2+ 22| Hy! — Hof |P)ds  (4)
c

where Z is an arbitrary positive constant with dimensions of im-
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Fig. 1.

Arbitrary shaped regions.

pedance. In some problems, only scalar fields will be necessary,
rather than the vector form of (1)—{(4). Most generally, it is sufficient
to consider the components of E and H tangential to the interface
C, as described in the scattering problem [17]. In all cases, J is a
nonnegative number which can be considered an error norm and
which can only be zero for a physically correct eigenvalue k and
associated Fourier coefficients {a,} and {b,}. The least squares
criterion is to require that for given truncated series (1) and (2), the
functional J ({a.}, {ba}, k) of (4) be minimized over all possible
{as}, {ba}, and k. Substituting the expansions (1) and (2) into (4)
gives a Hermitian form which can be expressed in matrix form as

J({an}, {bn},k) = a*da (5)

where the vector @ = (a1,as,+* *an,b,bz,»++by) and A4 is a Her-
mitian positive-definite matrix. For a given number of terms, say
N and M in (1) and (2), and for a given value of %, the matrix 4
is determined. To avoid trivial minimization (such as the vanishing
of all @’s and b’s) the minimum is subject to

a*a = 1 (6)

or possibly to more complicated normalization [87.

It is known [5] that if (6) is satisfied, then a*4a of (5) attains
its smallest value when a equals the eigenvector associated with the
smallest eigenvalue A; of A. The smallest value attained is in fact
A1, and so by the use of standard computer routines, the minimum of
J is found for all possible {a,} and {b,}. By computing A\ for a
range of k values, curves will be obtained of the form shown in Fig. 2,
(the problem being solved is described in the following section). In
the limit, with M = N = «, )\ would fall to zero at the exact
eigenvalues of the problem, at which points (only) the boundary
conditions would be satisfied precisely. For any value of k, decreasing
M or N will generally raise (and by the minimization definition,
cannot lower) the value of A;. With practical truncated series, A
will therefore give minimum values near to the correct eigenvalues,
such as in Fig. 2. These minima with N = 56,-+,10 give the
desired successive approximations to the eigenvalues.

T1I. APPLICATION

Numerical results will now be illustrated with two examples.
The first was chosen for its simplicity in introducing the method.
The second example is more testing (and complicated) and allows
a more “‘in-depth’’ comparison of least squares with Fourier match-
ing.

The first example is the L-shaped waveguide or membrane pictured
in Fig. 3. This test is simple to implement, without being in any way
a “special case.’’ Accurate results of TM modes are also available
6,71

By the physical symmetry of the waveguide, all modes can be
taken to have a scalar field ¢ that is either odd or even about the
symmetry axis A-B of Fig. 3. Considering firstly a TM mode, a
scalar field ¢ which satisfies the boundary condition ¢ = 0 along the
conducting walls y = 0, y = =, and = 27, and the Helmholtz equa-
tion (V2 4+ k*)¢ = O inside the structure can be taken as
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wavenumber kt is 1.5398.

N
= ) a,sin (ny) sin ya(z — 2r)

n=l

where v, = (k2 —~ n2)12, For odd TM modes, ¢ should also vanish
along the symmetry line A-B (viz., y = z) and so an appropriate

form for (4) is

A

=1

T N
J({an},k) = /B ¢l =f 3t sin (na) sin va (€ — 21)
0

1‘\ 1 T
1.

6
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N=5
N=56
N=7
N=28
N=29
N =10

(N

. ﬁr: apsin (pz) sin v,(z — 27) dz. (8)

»=1

The elements of matrix 4 in (5) are therefore

A = f sin (nx) sin (pz) sin yo (@ — 27) sin vp(x — 27) dz  (9)
]

which can be evaluated easily. This gives A ag 2 Hermitian positive-
definite matrix, with all elements either real or imaginary. Multiply-
ing certain rows and columns by j transforms 4 to a real, symmetric,
positive-definite matrix, which is then solved to give the lowest

eigenvalue \;.

Results ate given in Fig. 2 showing curves around a minimum
of M, with the matrix order increasing from 5 to 10. If the & values
associated with the minimum are plotted against matrix order, a

convergence curve is obtained as in Fig. 4.

Curves are given for a variety of “‘scaling factors.”” These are
factors by which the ¢ defined in (7) has been divided, so that (for
.instance) the effect of the factor n exp(2wn) is to divide A,, of
(9) by np exp [2x(n + p)]. The fastest convergence in Fig. 4 is
clearly for the factor n exp(2zn). The diagonal terms An, have (for
large n) dependence exp (47n) and so it clearly seems that best
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Fig. 3. L-shaped membrane or waveguide.
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Fig. 4. Effect of scaling factors on convergence with matrix order.

convergence is obtained when scaling eliminates any exponential
variation along the diagonal elements of A4, or in fact along any row
or column. Curves similar to those in Figs. 2 and 4 have been obtained
for higher order E modes, including modes that are even or odd about
the symmetry line. The procedure for even E modes is identical to
that for odd modes, again using (7) as an expansion for ¢, but
minimizing
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B fa6\? B
/ (—) dl rather than / ¢dl
4 \9n, 4

where 9/0n denotes differentiation normal to A-~B. Results are
summarized in Table 1. .

Exact results are obtained for modes 3, 8, and 8a as the correct
eigenfunctions are given by either one or two terms from (7).
Otherwise errors are generally greater for even modes, as would be
expected due to their singular fields near the reentrant corner,

The second and more testing application of the least squares
approach is to the eigenvalue problem of miecrostrip in a hollow
conducting guide. Taking advantage of the symmetry plane, just
half of the cross section is shown in Fig. 5. Earlier work of the authors
{87 on Fourier matching of this structure gave results that suffered
from relative convergence [27,[37; typieal results in Fig. 6 show
convergence to different limits according to the choice of the ratio of
numbers of basis functions in the two regions. This was strictly to be
expected as, like similar Fourier approaches [97], no attempt was

TABLE I

Comraring CoMPUTED VALUES OF k2 (AT MINIMUM ;) FOR E MobES
witH PusBLisuED REsurts [6], [7]

PREVIOUSLY LEAST
MODE NO. MODE TYPE PUBLISHED SQUARES
1 Symmetric 0.9767 8
2 Antisymmeiric 1.5398 1.5393
3 Symmetric square 2.0000 2.0000
4 Antisymmetrie 2.991 2.8913
5 Symmetric 3.2334 3.327
6 Symmetric 4.2022 4.,3023
7 Antisymmetric 4.5542 4,5353
8 Symmetric square 5.0000 5.0000
8a Antisymmetric 5.0000 5.0000
g Symmetric 5.7458 5.8383

® This result was not produced due to the chance proximity of v, to
1, causing loss of significant figures in the evaluation of (9). The
problem could be avoided by the use of double-length arithmetic or,
better still, by division of each term in (7) by sin (27yn).
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Fig. 5. Half of cross section of microstrip in a conducting box.
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and dimensions ¢ = b = 12,7 mm, w = h = 1.27 mm of Fig. 5. Rel-
ative convergence of these ‘‘Fourier-matching’’ results arise from
different ratios (Such as 1:11, 1:9, etc.) of numbers of equations in
applying boundary conditions to the conducting strip and the air—
dielectric interface, respectively.

made to satisfy edge conditions at the microstrip edge. The least
squares approach was therefore applied with the expectation [17 of
giving more reliable (and perhaps more rapidly convergent) results.

For both the Fourier matching and least squares approaches,
complete expansions are used for the components of E and H, with
separate expansions in regions I and II of Fig. 5, such as

N-1
EJ = 3 4 cos (anz) sin (vay) (10)
n=0
N-1
H.JI = (e/po)V2 D, by sin (anz) c0s (yay) (11)
n=0

where

an = (2n + 1)w/a, vn = (o’ue — B — a,?)1?

and 8 is the longitudinal phase propagation constant. Other com-
porents of E and H can, of course, be expressed explicitly from
(10) and (11). In this way, one derives fields that satisfy Helm-
holtz equations in both regions I and II, and boundary conditions
on the conducting walls y = 0, y = b, z = a/2, and on the magnetic
wall £ = 0. The problem is therefore reduced to arranging that
the field expansions also satisfy boundary conditions across the
interface at y = h, namely, the tangential E fields must vanish
along the microstrip (0 < z < w/2) and the tangential E and H
fields must be continuous across the air-dielectric interface
(w/2 < z < a/2). Because of the continuity (from region I to IT) of
tangential F field along the complete boundary x = 0 to = = a/2,
and as identical orthogonal basis functions along y = A are used for
Ean in regions I and I, the equalities £, = E,1I and E,I = E,I at
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y = h can be performed on a term-by-term basis, so giving a simple
relation between the individual coefficients a, and b, of (10) and
(11) and the corresponding coefficients for E! and HL a, and b,
are therefore the only ‘“free’” field coefficients, and together with
for given g, they must be chosen to satisfy the boundary conditions
along y = h of

B! = 0and E,! = 0 along the strip (0 < z < w/2) (12)
H,I — H,J1 = 0and H,T — H,'' = 0 along the dielectric
c(w/2 <x<a/2). (13)

These four boundary conditions of (12) and (13) can be approxi-
mated in various ways by Fourier matching. The authors chose [8]
to make the field components of [127] orthogonal to M terms from
quarter-period sine or cosine expansions over 0 < z < w/2, and
similarly, the components of (13) orthogonal to N terms from ex-
pansions over w/2 < x < g/2. In this way, a comparison was made
with earlier results [10],[11], with complete agreement to the
accuracy of the published curves. By altering the ratio of numbers
of terms (N/M), results were nevertheless found to suffer from
relative convergence, as illustrated in Fig. 6. Without special treat-
ment (and then with some delicacy), these problems appear in-
evitable with Fourier matching [3]. '

To avoid these problems, possibly to speed up convergence,
and to provide a meaningful comparison of leasc squares with
Fourier matching, the same problem was solved by approximating
the four boundary conditions of (12) and (13) by a least squares
criterion. As outlined in (1), (2), and (4), the four conditions of
(12) and (13) can be combined into minimization of the following
Hermitian form - ;

wl2

T ({an}, (b)) =[ (|EA+ | BI P do +

al2
Zﬁ/ {|HL — HJU2 + | HL — HUB |P)de. (14)

By introducing the factor v./|+.|into (10) and (11), the

coefficients a. and b, can all be taken real, so that (14) is a positive-
semidefinite quadratic form in {a.},{b.}. Again, as described for
(4) and (5), the minimum of (14) is obtained by use of standard
matrix routines [12]. In the iris scattering problem [17 an optional
electric-magnetic weighting factor was found very effective in
speeding up convergence. For this microstrip problem, with four
distinet boundary residuals of (12) and (13), three weighting factors
4,B,C are available which multiply all E,, H,;, and H, values by
A, B, and C, respectively, before inclusion in the quadratic form
(14). It was found that the weighting factors were best selected by
arranging that similar valaes of contribution came to the quadratic
forms from the four boundary residuals of (14). Although naturally
more complicated than the scattering case with only one factor,
the effects of variation of weighting factors are similar, and typical
convergence curves are shown in Fig. 7. The curves show, firstly, the
relative convergence of the Fourier approach already referred to above.
There is a discrepancy of about 0.5 percent in frequency between
results with different N/M ratios. The least squares results can be
seen to be, as with the scattering problem [17, generally descending
upper bounds or ascending lower bounds. Even more important,
ihe convergence is considerably better for the least squares approach.
Comparable accuracy is obtained for a matrix order that is smaller
by a factor of about 3, a reduction of about 30 in computing time for
the matrix/determinant solution.

Fig. 7 shows convergence to a frequency, resulting in one point
of ‘a dispersion characteristic; the total w-g diagram is given in
Fig. 8. Results agree with earlier published curves [107,[11] to their
reading accuracy.
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IV. CONCLUSIONS

As a numerical technique, the least square error minimization
is near in style to point matching and Fourier matching. All three
methods are versatile in being able to join up a patchwork of regions,
each with a complete expansion that exactly safisfies the differential
equations of the problem. In each method, some different criterion
is put forward to approximately satisfy the remaining boundary
conditions.

Point matching is undoubtedly the easiest scheme to implement,
as it replaces integration by sampling of fields at discrete points.
In its simple form, however, it is known that it can fail to converge or
give useful answers [77],[13]. Fourier matching and least squares
both involve integration of the boundary residuals (boundary
errors). Inner products are needed of all boundary residuals formed
with either a set of test functions (Fourier) or the same boundary
residuals (least squares).

In the earlier sections, it has been demonstrated that the least
squares method, as used for scattering problems, can equally be
applied to eigenvalue problems. In Section ITI, examples are given of
two such applications, the microstrip example being taken as a
test case to compare with Fourier matching. For this example, the
field analysis leading to the formulation of the matrix elements is
very similar for the two techniques; in each case, four integrals are
required along a boundary interface. The two matrix orders are the
same for the same choice of expansion sets. The least squares ap-
proach requires the (lowest eigenvalue) solution of areal, symmetric,
positive-definite matrix whereas Fourier matching requires the
evaluation of the determinant of a real but nonsymmetric and non-
definite matrix. Least squares therefore needs half the storage for
the matrix elements. In this work, the least squares matrix was
solved by Householder tridiagonalization [127 followed by Sturm
sequence and bisection—the Fourier matrix by Gaussian elimina-
tion with partial pivoting [14].

For the least squares, solution can be via inverse iteration [15],
with Choleski decomposition [14]. Whether using the Fourier or
least squares approach, computing time is likely to be comparable
for the evaluation of the matrix elements; similarly, for the solution
of the matrix. There is therefore little between the methods, in
terms of computing time, for a given matrix order.

Overall, the least squares approach would seem to have two
potentially important advantages. Firstly, by the empirical choice
of optimum weighting factors with low-order matrices these factors
can then be used to advantage for higher matrix orders, and con-
siderable acceleration of convergence has been obtained compared
with Fourier matching. Best weighting factors were found to occur
when arranged (as is easily done) for equal contribution to the error
norm from the different boundary residuals. Secondly, in contrast
to point matching (and as described in [17,[17], and [187]) it is
rigorously convergent.
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The Microstrip Double-Ring Resonator
INGO WOLFF axp WOLFGANG MENZEL

Abstract—The resonance frequencies and the fields of a microstrip
double-ring resonator are discussed. It is shown that no pure even or
odd mode can be excited on the resonator. Therefore it is concluded
that the microstrip double-ring resonator principally cannot be used
to measure the phase velocities of the even and the odd modes on a
coupled microstrip line.

I. INTRODUCTION

Gould and Talboys [1] described a method for measuring the
wavelengths on coupled microstrip lines, using a double-ring resona-
tor. The described method has been used by Getsinger [27 too, to
prove a theory for calculating the even- and odd-mode wavelengths.
Gould and Talboys [1] assumed that an even and an odd mode can
be excited on the double-ring resonator despite the fact that the
two coupled rings are of different lengths. Furthermore they de-
scribed that they measured an additional splitting of the resonance
frequencies in the case of loosely coupled rings, using a field probe
to detect the different resonances.

II. THE STRAIGHT MICROSTRIP DOUBLE-LINE
RESONATOR OF DIFFERENT LINE LENGTHS

To get a first insight into the field distribution of a double-ring
resonator, the resonator is unrolled and a resonator of two straight
coupled microstrip lines, as shown in Fig. 1, is considered. This
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