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Inactual useitis observed that (13) converges very rapidly, so that

three iterations are sufficient with Ar = 30 for a wide range of

dimemiom and frequencies. Furthermore, in any of the cases con-

sidered the iterated weighting factor Z# turned out to be of the

order of that Zo,~ which was found by minimizing ldb~(Z)/cZNl.

For example, in Fig. 2 the values of Z# and Z.., differ by a factor

of about 3.5.

NUMERICAL RESULTS

Theinput admittancey =y%of theresonating structure shown in

Fig. 1 was computed and is plotted as a function of frequency. Series

resonance occurs when the capacitive gap compensates the input

impedance of the propagating circular l?ol mode. The validity of the

program has been tested by comparison with Marcuvitz’ results for

thecapacitive gapat low frequencies, which issameas the problem

considered here with c, = 1 [S]. Generation of the orthonormalized

functions t.r, tkI1, andthe elements of thematrix Gtakesabout30s

of CPU time on a CDC-6400 computer for the sum of the modes

N +P = 80. The CPIJtime required forthegeneration andinver-

sionof a50 X 50conlplex C~-nlatrix isabout5s.

Fig. 2 shows the dependence of the least squares solution bN on

weighting factor Z and mode number N. At the same time an error

estimate is provided, since a change of sign exists for the slope of

bN(z). For comparison, the deviation of lr,~(Z) \ from its ideal

value I ro \ = 1 is also plotted as a measure of power conservation

in Fig. 2.

The dashed curve in Fig. 2 -refers to susceptancw which were

computed by minimizing I db~(Z)/dN I with respect to Z at given

values of Ar. The utilization of the iterated weighting factor ZNK

requires less computer time and results in the dotted curve.

In ad{ltion to thk, the influence of the upper summation limits N

and P on the convergence rate has been studied because the ratio

N/F’ plays an important role for methods which exhibit relative

convergence phenomena [9], [10]. In Fig. 3 the dependence of

bNonthis ratio is shown asa function of themodenumber N. The

trend of the minimum value of FN decreasing with N for a fixed

Z = Z..t asseen from Fig. 3 serves as a measure of the convergence

rate. It has been found generally that it is sufficient to choose N/P in

accordance with point-matching methods, so that in the present

case, the near-optimum valueof N/P = R./(R= — Ri) lies between

10/5 and 10/6. This coincides with the behavior of FN shown in

Fig. 3 having its maximum average slope FIO/F50 around this ratio
of N/P.
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The Solution of Electromagnetic Eigenvalue Problems

by Least Squares Boundary Residuals

HUGH J. A. LARIVIERE AND

J. BRIAN DAVIES, MEMBER, IEEE

Abstract—The least squares boundary residual technique as used

for the numerical solution of scattering problems is extended to the

solution of electromagnetic eigenvalue problems. The theory is de-

scribed and numerical results are given for the solution of an L-

shaped membrane and microstrip in a hollow conducting guide. The

microstrip example was chosen as a test case to compare with Fourier

matchkg. This least square error mirnhnization technique is of the

same family as point matching and Fourier matching; however, it is

shown to have three potentially important advantages: 1) it is rigor-

ously convergent, 2) the choice of optimum weighting factors greatly

accelerates convergence between a decreasing upper bound and

an increasing lower bound, and 3) it is free from problems of relative

convergence.

I. INTRODUCTION

Recently, there has been a surge of interest in the least squaree

boundary residual technique for the numerical solution of scattering

problems [1], [16], [19]. In this short paper, the same approach

is extended to the solution of eigenvalue problems, and examples
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are given of solutions of hollow conducting waveguide and of micro-

strip in a box. An appraisal of the method is given in the final section.

As in the scattering problem, the least squares approach has

(in contrast to point-matching [13] and the usual Fourier-matching

techniques [3]) the advantage of free parameters that can be chosen

to guide convergence between a generally decreasing upper bound

and an increasing lower bound. These parameters can be approxi-

mated for small order matrices and then used to accelerate conver.

gencewith increasing matrix order. Other advantages of the method

are (compared with Fourier snatching) its freedom from problems of

relative convergence [2], [3], and (compared with point matching)

its safer criterion, errors being minimized that areglobal rather than

sampled just at discrete points.

To avoid repetition, it will be taken that most of the finer details

given for the scattering problem [1] still apply, e.g., choice of

basis functions, the use of mathematically convenient interfaces,

and aspects of the edge condition. After a brief account of the

principles of the method (Section II), results of applications will be

given in Section III and afinaldiscussion followsin Section IV.

II. THEORY

In point matching, Fourier matching, and the proposed least

squares approach, advantage is taken of the fact that one can easily

satisfy thedifferential equation of the problem. In each method, tbe

region of the problem is divided into a number of subregions, ovei

each of whicliis taken atruncated series from a complete expansion.

In thk way, the problem is reduced to approximately satisfying

boundary conditions over certain interfaces. These interfaces may be

physical ones, such as conducting or dielectric surfaces (boundaries

of the original problem) or ones of mathematical convenience that

join up the specially introduced subregions.

The boundary residual is defined [I] around the interfaces

as a function R(s) that is a linear combination of the total electro-

magnetic field expansions in adjacent subregions, a combina-

tion such that at all points of the interfaces (viz., for all s) the

vanishing of R(s) is a necessary condition for the physical solution

to the problem. Point matching arranges that these boundary re-

siduals vanish at selected points around the interfaces. Fourier

matching (or the method of moments [4]) arranges that R(s) is

orthogonal (over therangeofs) toafinitenurnberof basis functions.

Least squares matching minimizes some weighted integral of R(s)z

over all s. In all cases, the eigenvalues have also to be found that

allow the preceding boundary conditions to be best satisfied.

Least square solution of an eigenvalue problem will now be

illustrated by consideration of the arbitrarily shaped two-dimen-

sionalregion in Fig. l. Suppose itispossible towrite expansions of the

E and H fields in each region as

(2)

which satisfy the boundary conditions on Cl and C!, and LMaxwell’s

equations in S1 and S2, respectively. The preceding field basis func-

tions ~~%and ~.% must all satisfy the same vector Helmholtz equation

(v’ + k’)v = o. (3)

Theproblem nowisto obtain thewavenumber k andthe coefficients

anandbfiof (1) and (2) that givethe best approximation toEI~ = J%t

and Hl~ = H2t across the interface C (t denoting the vector compo-

nent tangential to C). A Hermitian form in a’s and b’s can now be

defined by the functional

J({a~},{b~},~) =
/

( I E,t – E,’ ]2 + Z’ I H,’ – Hz~ l’)ds (4)
c

where Z is an arbitrary positive constant with dimensions of im-

C1

Fig. 1. Arbitrary shaped regions.

pedance. In some problems, only scalar fields will be necessary,

rather than thevector form of (1)–(4). Most generally, it insufficient

to consider the components of E and H tangential to the interface

C, as described in the scattering problem [1]. In all cases, J is a

nonnegative number which can be considered an error norm and

which can only be zero for a physically correct eigenvalue k and

associated Fourier coefficients {an} and {bn}. The least squares

criterion istorequire that forgiven truncate dseries (1) and (2), the

ftmctional J ({an}, {bfi), k) of (4) be minimized over all possible

{afi), {bn), andk. Substitutingt heexpansions(l) and (2) into (4)

gives a Hermitian form which can be expressed in matrix form as

J({a~}, {b~},k) =a*Aa (5)

where the vector a = (al,at, . . ‘aN7bl, b2, . ..bM) and A is a Her-

mitian positive-definite matrix. For a given number of terms, say

Nandil!lin (1) and (2), and for agiven value of k, the matrix A

is determined. To avoid trivial minimization (such as the vanishing

of alla’sandb’s) theminimum is subject to

orpossibly to more complicated normalization [8].

It is known [5] that if (6) is satisfied, then a*Aa of (5) attains

its smallest value when a equals the eigenvector associated with the

smallest eigenvalue h of A. The smallest value attained is in fact

AI, and so by the use of standard computer routines, the minimum of

J is found for all possible {a~} and {bn). By computing Xl for a

range of kvalues, curves will be obtained of the form shown in Fig.2,

(the problem being solved is described in the following section). IrI

the limit, with M = N = CO,A1 would fall to zero at the exact

eigenvalues of the problem, at which points (only) the boundary

conditions wouldbesatisfie dprecisely. Forany valueof k, decreasing

M or N will generally raise (and by the minimization definition,

cannot lower) the value of h. With practical truncated series, &

will therefore give minimum values near to the correct eigenvalues,

such as in Fig. 2. These minima with N = 5,6,...,10 give the

desired successive approximations to the eigenvalues.

III. APPLICATION

Numerical results will now be illustrated with two examples.

The first was chosen for its simplicity in introducing the method.

The second example is more testing (and complicated) and allows

a more “in-depth” comparison of least squares with Fourier match-

ing.

The first example is the L-shaped waveguide or membrane pictured

in Fig. 3. This test is simple to implement, without being in any way

a “special case.” Accurate results of Thl modes are also available

[6],[7].

BY the physical symmetry of the waveguide, all modes can be

taken to have a scalar field @ that is either odd or even about the

symmetry axis A–B of Fig. 3. Considering firstly a TM mode, a

scalar field o which satisfies the boundary condition @ = O along the

conducting walls y = O, y = r, and z = 2rr, and the Helmholtz equa-

tion (V2 + lc2)@ = O inside the structure can be taken as
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Fig. 2, & (field error norm) versus k~ (wavenumber) with increasing
number iVof expzmsion terms, for first odd TM modes of Fig. 3. Exact
wavenumber k~is 1.539S.

N

4 = ~ansin (ny)sin~. (z –2~) (7)
~=~

where T% = (Id — n2)1f2. For odd TM modes, #should also vanish

along the symmetry line A–B (viz., y = z) and so an appropriate

form for (4) is

‘({an”) ‘/: @2~’=[g”*sin(~~’ sin~n(~-2~)

“~lapsin (W)sin~p(z-2=)dz. (8)

The elements of matrix din (5) are therefore

/

.
A.p = sin (nr) sin (pz) sin~fi(z — 27r) sin7P(x — 27r) dx (9)

o

which can be evaluated easily. This gives A as a Hermitian positive-

definite matrix, with all elements either real or imaginary. Multiply-

ingcertizin rows and columns byj transforms A to a real, symmetric,

positive-definite matrix, which is then solved to give the lowest

eigenvalue kl.

Results are given in Fig. 2 showing curves around a minimum

of xl, with the matrix order increasing from 5 to 10. If the k values

associated with the minimum are plotted against matrix order, a

convergence curve is obtained e.sin Fig. 4.

Curves are given for a variety of “scaling factors?’ These are

factors bywhich the~ definedin (7) has been divided, so that (for

instance) the effect of the factor n exp(2mz) is to divide An= of

(9) bynp exp [27r(n+ p)]. The fastest convergence in Fig. 4 is

clearly for the factorn exp(2rn). Thediagonal terms Ann have (for

large n) dependence exp (4ti) and so it clearly seems that best
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Fig. 3. L-shaped membrane or waveg’uide.
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Fig. 4. Effect of scaling factors on convergence with matrix order.

convergence is obtained when scaling eliminates any exponential

variation along the diagonal elements of A, or in fact along any row

or column. Curves similar tothosein Figs. 2and4have been obtained

for higher order E modes, including modes that are even or odd about

the symmetry line. The procedure for even Emodes is identical to

that for odd modes, again using (7) as an expansion for ~, but

minimizing
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Bc%$=m ~B

— dl rather than
~ dn

+’dl
A

where d/&z denotes differentiation normal to A–B. Results are

summarized in Table I.

Exact results are obtained for modes 3, 8, and 8a as the correct

eigenfunctions are given by either one or two terms from (7).
Otherwise errors are generally greater for even modes, as would be

expected due to their Singular fields near the reentrant corner.
The second and more testing application of the least squares

approach is to the eigenvahe problem of microstrip in a hollow
conducting guide. Taking advantage of the symmetry plane, just
half of the cross section is shown in Fig. 5. Earlier work of the authors

[8] on Fourier matching of this structure gave results that suffered
from relative convergence [2_’J,[3]; typical results in Fig. 6 show

convergence to different limits according to the choice of the ratio of

numbers of basis functions in the two regions. This was strictly to be

expected as, like similar Fourier approaches [9], no attempt was

TABLE I

COMPARING COMPUTED VALUES OF W (AT MINIMUM kJ FORE MODES
wITH PUBLISHED RESULTS [6], [7]

MODENO. MOOETYPE

1 Symmetric

2 Anti symmetric

3 Symmetric square

4 P,nti symmetric

5 Symmetric

6 Symmetric

7 Anti symmetric

8 Symmetric square

13a Anti syrmnetri c

9 Symmetric

PREVIOUSLY

PUBLISHED

0.9767

1.5398

2.0000

2.9911

3.2334

4.2022

4.5542

5.0000

5.0000

5.7458

LEAST
~Q~AREs

a

1.5393

2.0000

2.0.913

3.3?71

4.3023

4.5353

5,0000

5.00!30

5.8383

‘ This result was not produced due to the chance proximity of Y%to
1, causing loss of significant figures in the evaluation of (9). The
problem could be avoided by the use of double-length arithmetic or,
better still, by division of each term in (7) by sin (2m7J.

Y r

Fig. 5. Half of cross section of microstrip in a conducting box.
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Fig. 6. Frequency versus (l/matrix order) for given E = 100 rad/m,
and dimensions a = b = 12.7 mm, w = h = 1.27 mm of Fig. 5. Rel-
ative convergence of these “Fourier-matching” results arise from
different ratios (Such as 1:11, 1:9, etc. ) of numbers of equations in
aPPIYing boundary conditions to the conducting strip and the s&-
dielectric interface, respectively.

made to satisfy edge conditions at the microstrip edge. The least

squares approach was therefore amiied with the expectation [l]of

giving m&ereliable (and perhap; more rapidly convergent) results.
For both the Fourier matching and least squares approaches,

complete expansions are used for the components of E and H, with

separate expansions in regions I and II of Fig. 5, such as

where

~=~

N–1

H,r= (C,/M)lf2 ~b~sin (a.z) cos (~~y)
~=lJ

an = (2n + l)7r/a, ~. = (co% — @ — %2)1/2

the longitudinal phase propagation constant. Otherand @ is

ponents of E and H can,-of cours~, be expressed explicitly

(10) and (11). In this way, onederives fields that satisfy Helm.
holtz equations in both regions I and II, and boundary conditions

on theconducting wallsu = O, v = b, z = a/2, andon the magnetic

wall x = O. The problem is therefore reduced to arranging that

the field expansions also satisfy boundary conditions across the
interface at y = h, namely, the tangential E fields must vanish
along the microstrip (O < z < w/2) and the tangential E and H

fields must be continuous across the air–dielectric interface
(w/2 < z < a/2). Because of the continuity (from region I to II) of
tangential, ?field along the complete boundaryx = Oto x = a/2,
and as identical orthogonal basis functions along y = h are used for
Etininreglons Iand II, theequalities E.1 = E,lland Ezl = E.llat

(lo)

(11)

com-
from
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v = h can be performed on a term-by-term basis, so giving a simple
relation between the individual coefficients am and b. of (10) and

(11 ) and the corresponding coefficients for E1l and HI1. u,. and fin
are therefore the only “free” field coefficients, and together with o
for given p, t,hey must be chosen to satisfy the boundary conditions

along y = h of

EZI = O and E.I = O along the strip (O < z < w/2) (12)

HZ1 – H.11 = O and H,l – H,ll = O along the dielectric

o(uJ/2 < z < a/2). (13)

These four boundary conditions of (12) and (13) can be approxi-

mated in various ways by Fourier matching. The authors chose [8]
to make the field components of [12] orthogonal to M terms from

quarter-period sine or cosine expansions over O s z < w/2, and
similarly, the components of (13) orthogonal to N terms from ex-

pansions over w/2 < x < a/2. In this way, a comparison was made

with earlier results [10], [11 ], with complete agreement to the
accuracy of the published curves. 13y altering the ratio of numbers
of terms (N/M), results were nevertheless found to suffer from
relative convergence, as illustrated in Fig. 6. Without special treat-

ment (and then with some delicacy), these problems appear in-
evitable with Fourier matching [3].

To avoid these problems, possibly to speed up convergence,

and to provide a meaningful comparison of leas c squares with
Fourier matching, the same problem was solved by approximating

the four boundary conditions of ( 12) and (13) by a least squares
criterion. As outlined in (1), (2), and (4), the four conditions of

(12) and (13) can be combined into minimization of the following
Hermitian form

/

!0/2

.l({anl, {bn),u) = {l E.ll’+l E$q’)rk+
o

/

a12
z, { I HJ – HJ’12 + I H.’ – H# l’} CIZ. (14)

UI12

By introducing the factor VJ I V. I into (10) and (11), the
coefficients a. and b. can all be taken real, so that (14) is a positive-

semidefinite quadratic form in {an), {bn}. Again, as described for
(4) and (5), the minimum of (14) is obtained by use of standard

matrix routines [12]. In the iris scattering problem [1] an optional

electric–magnetic weighting factor was found very effective in

speeding up convergence. For this microstrip problem, with four

distinct boundary residuals of (12) and (13), three weighting factors

A,B,C are available which multiply all E., H., and H, values by
A, B, and C, respectively, before inclusion in the quadratic form
(14). It was found that the weighting factors were best selected by

arranging that similar values of contribution came to the quadratic
forms from the four boundary residuals of (14). Although naturally

more complicated than the scattering case with only one factor,

the effects of variation of weighting factors are similar, and typical
convergence curves are shown in Fig. 7. The curves show, firstly, the
relative convergence of the Fourier approach already referred to above.
There is a discrepancy of about 0:5 percent in frequency between
results with different N/M ratios. The least squares results can be

seen to be, as with the scattering problem [1], generally descending

upper bounds or ascending lower bounds. Even more important,
the convergence is considerably better for the least squares approach.
Comparable accuracy is obtained for a matrix order that is smaller
by a factor of about 3, a reduction of about 30 in computing time for
the matrix/determinant solution.

Fig. 7 shows convergence to a frequency, resulting in one point

of ‘a dispersion characteristic; the total co-@ diagram is given in

Fig. 8. Results agree with earlier published curves [10],[11 ] to their
reading accuracy.
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IV. CONCLUSIONS

As a numerical technique, the least square error minimization

is near in style to point matching and Fourier matching. .411three

methods are versatile in being able to join up a patchwork of regions,

each with a complete expansion that exactly satisfies the differential
equations of the problem. In each method, some dlff erent criterion
is put forward to approximately satisfy the remaining boundary
conditions.

Point matching is undoubtedly the easiest scheme to implement,

as it replaces integration by sampling of fields at discrete points.

In its simple form, however, it is known that it can fail to converge or
give useful answers [7], [13]. Fourier matching and least squares

both involve integration of the boundary residuals (boundary

errors). Inner products are needed of all boundary residuals formed

with either a set of test functions (Fourier) or the same boundary

residuafs (least squares).

In the earlier sections, it has been demonstrated that the least

squares method, as used for scattering problems, can equally be

applied to eigenvalue problems. In Section III, examples are given of
two such applications, the microstrip example being taken as a
test cnse to compare with Fourier matching. For thk example, the
field analysis leading to the formulation of the matrix elements is

very similar for the two techniques; in each case, four integrals are
required along a boundary interface. The two matrix orders are the

same for the same choice of expansion sets. The lemt squares ap-

proach requires the (lowest eigenvalue) solution of a real, symmetric,

positive-definite matrix whereas Fourier matching requires the

evaluation of the determinant of a real but nonsymmetric and non-

definite matrix. Least squares therefore needs half the storage for

the matrix elements. In thk work, the least squares matrix was

solved by Householder tridlagonalization [12] followed by Sturm

sequence and bisection—the Fourier matrix by Gaussian elimi na-
tion with partial pivoting [14].

For the least squares, solution can be via inverse iteration [15],
with Choleski decomposition [14]. Whether using the Fourier or
lea+, squares approach, computing time is likely to be comparable

for the evaluation of the matrix elements; similarly, for the solution

of the matrix. There is therefore little between the methods, in

terms of computing time, for a given matrix order.

Overall, the least squares approach would seem to have two

potentially important advantages. Firstly, by the empirical choice
of optimum weighting factors with low-order matrices these factors

can then be used to advantage for higher matrix orders, and con-
siderable acceleration of convergence has been obtained compared

with Fourier matching. Best weighting factors were found to occur
when arranged (as is easily done) for equal contribution to the error
norm from the different boundary residuals. Secondly, in contrast

to point matching (and as described in [1], [17], and [18]) it is

rigorously convergent.
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The Microstrip Double-Ring Resonator

INGO WOLFF AND WOLFGANG MENZEL

Absfract—The resonance frequencies and the fields of a microstrip
double-ring resonator are discussed. It is shown that no pure even or

odd mode can be excited on the resonator. Therefore it is concluded

that the rnicrostrip double-ring resonator principally cannot be used

to measure the phase velocities of the even and the odd modes on a
coupled microstrip line.

I. INTRODUCTION

Gould and Talboys [1] described a method for measuring the
wavelengths on coupled microstrip lines, using a double-ring resona-

tor. The described method has been used by Getsinger [2] too, to
prove a theory for calculating the even- and odd-mode wavelengths.

Gould and Talboys [1] assumed that an even and an odd mode can
be excited on the double-ring resonator despite the fact that the

two coupled rings are of cliff erent lengths. Furthermore they de-
scribed that they measured an additional splitting of the resonance

frequencies in the case of loosely coupled rings, using a field probe
to detect the different resonances.

II. THE STRAIGHT MICROSTRIP DOUBLE-LINE
RESONATOR OF DIFFERENT LINE LENGTHS

To get a first insight into the field distribution of a double-ring
resonator, the resonator is unrolled and a resonator of two straight
coupled mi crostrip lines, as shown in Fig. 1, is considered. This
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